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1.1 Dirac

Ψ =



ψ
χ


 (1)

ψ, χ each have 2 complex components → 8 real
(field) degrees of freedom. Equation of motion
is 6pΨ = mΨ, or

(E − σ.p)ψ = mχ (2)

(E + σ.p)χ = mψ (3)

where σz =




1 0
0 −1


 etc. and h̄ = c = 1.Consistency

requires E2 = m2 + p2. Only one of ψ, χ is in-
dependent if equation of motion is obeyed: 4
real degrees of freedom (e.g. f↑, f↓, f̄↑, f̄↓).

ψ and χ are “Weyl fermion” fields.
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1.2 Massless

E = |p|

σ.p ψ = Eψ → σ.p̂ ψ = ψ h = +1/2 R
(4)

Similarly

σ.p̂ χ = −χ h = −1/2 L (5)



pz px − ipy
px + ipy −pz






ψ1

ψ2


 = E



ψ1

ψ2




pzψ1 + (px − ipy)ψ2 = Eψ1 (6)

(px + ipy)ψ1 − pzψ2 = Eψ2 (7)

Consistency requires E2 = p2. Only one of
ψ1, ψ2 is independent if equation of motion is
obeyed: 2 real degrees of freedom. Same for
χ1, χ2.
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1.3 Majorana

Can manufacture a 4-component fermion field
with still only 2 degrees of freedom by using the
charge conjugate of χ (or ψ):

ΨM =




iσ2χ
∗

χ


 ≡



χc

χ


 (8)

which is a Majorana spinor field and satisfies
CΨM = ΨM, i.e. the field is even under C. So
antiparticle = particle: this halves the number
of degrees of freedom in ΨM (f↑, f↓, f = f̄). Note
that χc behaves as an R field.

In this kind of notation, we can write the
Dirac field as

Ψ =



χc

f̄

χf


 (9)

which is built of L fields for f and f̄, instead of
L and R for f alone.
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1.4 3-D rotations

ψ′ = e−iα.σ/2ψ (10)

3 real parameters α ↔ angle, axis of rotation.
For an infinitesimal rotation, this is

ψ′ = (1 − iǫ.σ/2)ψ (11)

or

δǫ



ψ1

ψ2


 = −iǫ.σ/2 ψ = (2x2matrix)



ψ1

ψ2


 .

(12)
This is a symmetry: different components of

the spin-1/2 field get mixed under the rotation.
Similarly isospin, SU(3)c, etc. None of these
change the spin of the field!
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1.5 Simple SUSY

A simple SUSY transformation will “rotate”
a spin-0 field into a spin-1/2 field, and v.v.!!
Something like

δξφ(x) = (?) ξ χ(x) (13)

and
δξχ(x) = (?) ξ φ(x) (14)

How can we make sense of these? Take (13)
first.

1. Field degrees of freedom must match on both
sides of (13); can’t have more d.o.f.s on one
side than on other. If φ is a real scalar field,
φ = φ†, only 1 d.o.f. No fermion field has 1
d.o.f. Must have at least 2. So need complex
φ, φ† 6= φ, 2 d.o.f.s. This could balance a
Weyl ψ or χ field with 2 d.o.f.s. By conven-
tion, we choose χ. (We could, equivalently,
use a Majorana field.)
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But χ only has 2 d.o.f.s when equation of
motion is obeyed. In general will need χ
“off-shell” i.e. not obeying equation of mo-
tion (e.g. recall propagator (6p−m)−1, 6p 6=
m), so really need 4 scalar d.o.f.s ⇒ φ and
another complex scalar field F (“auxiliary
field”). We will ignore this complication,
and deal with {φ, χ} rather than {φ, χ, F}.
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2. Parameter ξ must be a spin-1/2 object, which
combines with the spin-1/2 χ on RHS to
make spin-0 φ on LHS.

3. ξ is independent of x: “global” SUSY (ξ(x)
is local SUSY → supergravity). ξ is a con-

stant spinor,



ξ1
ξ2


 not a field, but ξ1, ξ2 are

anticommuting objects.

4. Consider dimensions of ξ. Dimensions must
match on each side of (13).

Recall that with h̄ = c = 1 there is only one
independent dimension which is taken to be
that of mass, M . We denote the dimen-
sion of something by “[....]”. For instance,
[Action]=M 0, [x]=M−1 (like h̄/Mc). A typ-
ical spin-0 mass term in an Action is

∫
d4xm2 φ†φ,

from which it follows that [φ]=M . A fermion
mass term is mΨ̄Ψ, whence [Ψ] = M 3/2;
similarly for χ. We deduce that [ξ]= M−1/2

for dimensions to match in (13).
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5. RHS of (13) must be spin-0 combination of
ξ, χ. Take ξ to be L spinor, like χ. Then we
know how to couple two spin-1/2 objects to
spin-0 in q.m. : ξ · χ = ξ1χ2 − ξ2χ1 (“up-
down - down-up”). Actually this is Lorentz
invariant coupling! (boosts as well). So take

δξ φ(x) = ξ · χ(x). (15)

Note by the way that χ · χ = χ1χ2 − χ2χ1

is not zero.

6. Now consider (14). Checking dimensions we
see LHS is M 3/2, RHS is M 1/2; need M 1

from somewhere. In massless theory, only
possibility is ∂µ. Then we need to get rid of
the ‘µ’ index. This is done by dotting with
σµ = (1,σ). Correct transformation has
the form

δξ χ(x) = Aσµσ2ξ
∗∂µφ(x) . (16)

The rather complicated-looking expression
on the RHS does in fact behave like a ‘χ’.
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7. We need a Lagrangian. Consider free case:
L for massless complex scalar field φ is ∂µφ

†∂µφ,
and for massless Dirac is

Ψ̄iγµ∂µΨ = iψ†σµ∂µψ + iχ†σ̄µ∂µχ (17)

where σ̄µ = (1,−σ). We want the χ part.
So our candidate (free) Lagrangian is

Lfree = ∂µφ
†∂µφ + iχ†σ̄µ∂µχ . (18)

This is invariant under the SUSY transfor-
mations (15) and (16) if A=1!
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1.6 SUSY generators and SUSY algebra

Recall for rotations

χ′ = exp iα.J χ exp−iα.J (19)

J = (J1, J2, J3) are the generators of rota-
tions, and also the angular momentum oper-
ators. They obey the algebra [J1, J2] = iJ3. In
a similar way, for a SUSY transformation we
write

χ′ = exp iξ ·Q χ exp−iξ ·Q. (20)

Q must be a two-component spinor operator

Q =



Q1

Q2


.

11



The algebra of the SUSY generators Q1, Q2

is

{Qa, Qb} = (σµ)abPµ a, b = 1, 2 (21)

The fermionic operators Qa obey anticommu-
tation relations rather than commutation rela-
tions. The Pµ has its origin in the ∂µ of (16).

Equation (21) is very remarkable: it tells us
that the Q’s have a status on a par with the
space-time translation operators Pµ. Indeed,
the Q’s are a kind of “square root of a trans-
lation”. The familiar space-time transforma-
tions of the Lorentz group and space-time trans-
lations (which together make up the Poincaré
group) are extended to include the anticommut-
ing Q’s. It seems that this is the only possible
extension of the Poincaré group. Does Nature
make use of it?

12



1.7 SUSY multiplet structure
The SUSY algebra (21) determines the struc-

ture of SUSY multiplets. The answer is that
massless SUSY multiplets have the form
{|h = −j >, |h = −j + 1/2 >} + TCP

conjugate .
So taking j = 1/2 we have the multiplet

{|h = −1/2 >, |h = 0 >}, which is our “L χ +
scalar ” case, called the “ (left) chiral supermultiplet ”.
Taking j = 1, we have the multiplet {|h =
−1 >, |h = −1/2 >}, which consists of a mass-
less spin-1 (gauge) field - which has 2 on-shell
d.o.f.s - and a massless spin-1/2 L field. This
is the “ gauge supermultiplet ”. This is all we
need for the MSSM. [The case j = 2 gives us the
graviton partnered by the spin-3/2 gravitino.]
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Just as the angular momentum operators move
us between the different mj states, so the Q’s
move us between the states of a supermultiplet.
For instance

Q1|−j >= 0, Q2|−j >∝ |−j+1/2 > . (22)

Note that Q2 does change the spin of the state!
That’s because it itself is a spinor operator, car-
rying 1/2 unit of angular momentum. Note also
that the Q’s do not change the values of any
internal quantum numbers - i.e. all members
of a SUSY multiplet must have the same charge,
colour, electroweak quantum numbers, etc.
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1.8 The fields of the MSSM

In Table 1 we list the chiral supermultiplets
appearing in the MSSM, and in Table 2 the
gauge supermultiplets of the MSSM. For ev-
ery SM field there is a corresponding SUSY
partner, carrying a ˜ . Note that the SUSY
partners of the quarks and leptons are spin-
less bosons, those of the Higgs fields are L-type
fermions, and those of the gauge fields are L-
type fermions.
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Two SU(2)L Higgs spin-0 doublets are shown
in Table 1, whereas the SM uses only one. In the
SM, Yukawa interactions involving the Higgs
doublet φ = (φ+, φ0) give masses to the t3 =
−1/2 components of fermion SU(2)L doublets
when φ0 gets a vacuum expectation value, <
φ0 >= v. The t3 = +1/2 components of quark
SU(2)L doublets are given mass via the corre-
sponding Yukawa interaction with the charge-
conjugate field φC = iτ2φ

†T = (φ̄0 − φ−). But
in the SUSY version, Yukawa couplings cannot
involve both φ and φ† (see next lecture). The
MSSM therefore requires two separate Higgs
scalar doublets, one for the t3 = +1/2 fermion
masses, and one for the t3 = −1/2 fermion
masses. There are two corresponding super-
partner doublets.

The field content of the MSSM → gauge cou-
plings unify accurately at MU ∼ 2× 1016GeV.
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Names spin 0 spin 1/2 SU(3)c, SU(2)L, U(1)y

squarks, quarks Q (ũL, d̃L) (uL, dL) 3, 2, 1/3

(× 3 families) or (χu, χd)

ū ˜̄uL = ũ†R ūL = (uR)c 3̄, 1, -4/3

or χū = ψc
u

d̄ ˜̄dL = d̃†R d̄L = (dR)c 3̄, 1, 2/3

or χd̄ = ψc
d

sleptons, leptons L (ν̃eL, ẽL) (νeL, eL) 1, 2, -1

(× 3 families) or (χνe
, χe)

ē ˜̄eL = ẽ†R ēL = (eR)c 1, 1, 2

or χē = ψc
e

higgs, higgsinos Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) 1, 2, 1

Hd (H0
d, H

−
d ) (H̃0

d, H̃
−
d ) 1, 2, -1

Table 1: Chiral supermultiplet fields in the MSSM.

Names spin 1/2 spin 1 SU(3)c, SU(2)L, U(1)y

gluinos, gluons g̃ g 8, 1, 0

winos, W bosons W̃±, W̃ 0 W±, W 0 1, 3, 0

bino, B boson B̃ B 1, 1, 0

Table 2: Gauge supermultiplet fields in the MSSM.

————————————-
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2.1 Interactions

φ, χ model.

Lfree = ∂µφ
†∂µφ + χ†iσ̄µ∂µχ = T (23)

L = T − V (24)

Renormalizability [V ]≤M 4. e.g. e Ψ̄γµAµΨ [e] =
M 0.
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Example: Y (φ, φ†)χ · χ. Y can only be lin-
ear in φ, φ†: Yukawa-type interaction. Consider
SUSY transform of φχ · χ:

δξ(φχ · χ) = (ξ · χ)χ · χ + φδξ(χ · χ) (25)

Term with 3 χs can’t be cancelled by anything
else. However,

(ξ1χ2−ξ2χ1)(χ1χ2−χ2χ1) = 2(ξ1χ2−ξ2χ1)χ1χ2

(26)
= 2ξ1χ2χ1χ2 because (χ1)

2 = 0 (27)

= −2ξ1χ1χ2χ2 = 0. (28)

So actually this term is SUSY-invariant. But
this will not work for φ†χ · χ ! SUSY-invariant
Yukawa interactions can only involve φχ·χ, not
φ†χ ·χ. So can’t use φC = iτ2φ

† as in SM. Must
have two separate Higgs scalar SU(2)L doublet
fields for t3 = +1/2 and t3 = −1/2 fermion
mass generation.
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General solution (Wess-Zumino model)

V = |Mφ+
1

2
yφ2|2+1

2
(M+yφ) χ·χ+h.c. (29)

or

V =
∣∣∣∣∣
∂W (φ)
∂φ

∣∣∣∣∣
2
+ 1

2
∂2W
∂φ2 χ · χ + h.c. (30)

W is “superpotential; here W = 1
2
Mφ2 +

1
6yφ

3. We note the following terms in (29). (i)
Mass for spin-0 |M |2φ†φ; (ii) mass for spin-1/2
1
2Mχ ·χ+h.c.; (iii) cubic scalar self-interactions
1
2yM

∗φ2φ†+h.c.; (iv) quartic scalar self-interactions
1
4y

2φ2φ2†; (v) Yukawa interactions 1
2yφχ · χ +

h.c..
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These interactions are highly constrained. For
example, the same coupling parameter enters
into the cubic and quartic scalar self-interactions,
as well as the Yukawa-like boson-fermion inter-
action. In particular, the quartic coupling 1

4y
2 is

exactly the square of the Yukawa coupling. This
results in a cancellation between the quadratic
divergences encountered in one-loop corrections
to the Higgs mass parameter, leaving only log-
arithmic divergences (a boson loop can cancel a
fermion loop because the latter carries a relative
minus sign).

This property means that the “SM fine-
tuning problem” can be resolved in a SUSY-
invariant theory.

In general, with many chiral supermultiplets
as in the MSSM, the Yukawa term is

1

2
Σi,j

∂2W

∂φi∂φj
χi · χj. (31)
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2.2 The Yukawa interactions of the MSSM
In the SM, the Yukawa interactions of the

Higgs fields with the fermions generate their
(Dirac) masses when the neutral Higgs devel-
ops a vev (SSB). Dirac mass is

mfΨ̄fΨf = mf(ψ
†
fχf + χ†

fψf) (32)

= mf((iσ2χ
†T
f̄ )†χf + h.c. (33)

= mfχf̄ · χf + h.c.. (34)

Here iσ2 =




0 1
−1 0


. Want similar mechanism

in MSSM.
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Consider as an example a single W-Z super-
potential term of the form

W1 = yu ˜̄uL(ũLH
0
u − d̃LH

+
u ) (35)

which is an SU(2)L singlet. This will generate
the Yukawa interactions

1

2

∂2W

∂ ˜̄uL∂ũL
χūL

· χuL
+

1

2

∂2W

∂ũL∂ ˜̄uL
χuL

· χūL
+ h.c.

(36)

=
1

2
yuH

0
u(χūL

·χuL
+χuL

·χūL
) = yuH

0
uχūL

·χuL
+h.c..

(37)
When H0

u develops a vev < H0
u >= vu, we

find a u-mass term of just the form (34) with
mu = yuvu.

In the realistic case, we need to include flavour
mixing via a 3 × 3 matrix y.

Two similar superpotentials give mass to “d”
and “e” states (νs massless) exactly as in SM
with SM Yukawa couplings, along with< H0

d >=
vd.
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There is also the possible new term

WH = µ(H+
u H

−
d −H0

uH
0
d) . (38)

This “µ” is the only new parameter required,
so far.
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2.3 R-parity
Unfortunately, however, there seems nothing

to stop us from having a term of the form

λ˜̄τL(ν̃eLµ̃L − ẽLν̃µL). (39)

The problem with (39) is that it carries net lep-
ton number, ∆L = 1. Also B-violating cou-
plings are possible. In the SM, it is remarkable
that there are no possible gauge-invariant renor-
malizable terms which violate B or L. These
are in fact violated by non-perturbative elec-
troweak effects, so we cannot simply impose B
and L conservation as a fundamental symmetry.
Instead we impose “R-parity”, where R = +1
for all SM particles, and R = −1 for sparticles.
The results of this imposition are (i) the lightest
sparticle is stable, and if neutral is a candidate
for dark matter; (ii) sparticle decays contain an
odd number of LSPs; (iii) sparticles are only
produced in pairs at the LHC, ∆E ≥ 2m

χ̃0
1
.
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2.4 Gauge interactions
U(1) case

Lfree = −1
4
FµνF

µν + iÃ†σ̄µ∂µÃ . (40)

The first term is the usual Maxwell Lagrangian
involving Fµν = ∂µAν − ∂νAµ where Aµ is the
photon field; Ã is the neutral L-fermion part-
ner of the photon, the photino. Aµ and Ã each
have 2 d.o.f.s when their equations of motion
are satisfied. (40) by itself is SUSY-invariant.
Need to include chiral supermultiplets carry-
ing the gauge group quantum numbers. Sim-
ple U(1) case: add in a chiral supermultiplet
{φ, χ} carrying U(1) charge q. The gauge in-
teractions are as usual taken care of by the
replacements ∂µφ†∂µφ → Dµφ†Dµφ Dµ =
∂µ+iqAµ and iχ†σ̄µ∂µχ→ iχ†σ̄µDµχ. To make
the whole thing SUSY-invariant additional in-
teractions are required, namely√

2q[(φ†χ) · Ã + h.c.] + 1
2q

2(φ†φ)2 (41)

(φ†χ) is U(1) neutral, and the · is the spinor
dot product between the L-spinors χ and Ã.
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(43) generalizes in the non-Abelian case to

√
2g[(φ†T αχ)· g̃α+h.c.]+

1

2
g2(φ†T αφ)(φ†T αφ).

(42)
In the SU(2)L case, the first term will involve
terms of the form

(H†τ H̃) · W̃ . (43)

There will also be a similar term involving B̃.
After electroweak symmetry-breaking, the neu-
tral wino, bino and Higgsino fields will be mixed
by these interactions, leading to the physical
neutralinos χ̃0

1, χ̃
0
2, χ̃

0
3, χ̃

0
4. Similarly the phys-

ical charginos will emerge from mixing of the
charged components. An important point to
note is that the second term in (42) is a Higgs-
like quartic scalar self-coupling, but with a pre-
scribed coefficient; this has to be added to the
W-Z superpotential term |W |2. It is this pre-
scribed quartic scalar coupling that is responsi-
ble for the bound on the lightest Higgs mass in
the MSSM (see section 2.6).
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All these gauge-related interactions are fully
determined - the only new parameter up to this
point (beyond those of the SM) is still ‘µ’ of
(38).
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2.5 SUSY breaking
Clearly the SUSY of the MSSM cannot be an

exact symmetry. There are two ways to break
it: SSB, or explicitly. Two points:

(a) The “V (φ)” for the scalar field in our sim-
ple {φ− χ− Ã} model is

∣∣∣∣∣∣∣∣

∂W

∂φ

∣∣∣∣∣∣∣∣

2

+
1

2
q2(φ†φ)2 (44)

which is necessarily ≥ 0. Usually we picture
SSB via a potential of the form

VH = −µ2
Hφ

†φ + λH(φ†φ)2 (45)

which has a minimum at a non-zero value of
φ0 (the vev), at which point VH is negative. In
a SUSY theory, the vacuum energy is exactly
zero.

29



It has proved very difficult to construct any
useful model of spontaneous SUSY breaking.
Furthermore the terms quadratic in the Higgs
fields in |∂W/∂φ|2, which arise from the “µ”
term µHu ·Hd in W , are

|µ|2(|H+
u |2 + |H0

u|2 + |H−
d |2 + |H0

d|2) (46)

which don’t have any minus signs, as would be
needed to trigger electroweak SSB. So as SUSY-
invariant theory can’t accommodate e-w sym-
metry breaking (might the two breakings be re-
lated?).
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(b) Explicit SUSY-breaking terms. They have
to be “soft” (i.e. mass terms or cubic scalar
φ3 couplings) or else the cancellation of those
quadratic divergences will be spoiled; and they
have to be gauge invariant. There are no pos-
sible gauge-invariant mass terms in the SM -
that’s why gauge boson as well as fermion masses
are generated by SSB. But superpartner fields
can have gauge invariant mass terms:

1. gaugino masses

1

2
(M3g̃

α · g̃α+M2W̃
a ·W̃ a+M3B̃ ·B̃+h.c.)

(47)
where α runs from 1 to 8 and a runs from 1
to 3.

2. squark (mass)2 matrices

m2
Q̃ij
Q̃†
i .Q̃j etc. (48)

3. and slepton (mass)2 matrices.

There are also
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Triple scalar couplings

and

Higgs (mass)2 terms which are SUSY break-
ing because they involve only the scalar fields
and not their˜partners:

m2
Hu
H†
u.Hu +m2

Hd
H†
d.Hd + b(Hu.Hd + h.c.)

(49)
where the parameters, despite appearances, are
not necessarily positive!
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Altogether these possible explicit SUSY-breaking
terms introduce very many parameters - more
than 100. Furthermore, the transformation that
diagonalizes the quark (lepton) mass matrix of
the SM does not in general diagonalize the squark
(slepton) mass matrix → danger of large FNC
processes. Also, complex mass matrices →CP
violation.

One framework which can lead naturally to
suppression of dangerous off-diagonal terms is
‘minimal supergravity theory’ (mSUGRA), in
which the masses take the simple form (at the
GUT scale)

M1 = M2 = M3 = m1/2 (50)

m2
Q̃ = m2

˜̄u = m2
˜̄d

= m2
L̃ = m2

ẽ = m2
01. (51)

m2
Hu

= m2
Hd

= m2
0. (52)
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2.6 Higgs sector and e-w symmetry breaking
The doublets (H+

u , H
0
u) and (H0

d , H
−
d ) con-

tain 4 complex fields = 8 real d.o.f.s As in the
SM, 3 of these combine with the gauge fields
to give the massive W±, W0 and Z0 after SSB.
Here there are two vevs, vu and vd . We have

m2
W =

1

2
g2(v2

u + v2
d) (53)

for example. This leaves 5 remaining d.o.f.s in
the MSSM Higgs sector, with masses as follows.

mA0 = (2b/ sin 2β)1/2 (54)

where
tan β = vu/vd . (55)

This is actually a pseudoscalar boson.

mH± = (m2
W +m2

A0)1/2. (56)

m2
H0 =

1

2
{m2

A0+m2
Z+[(m2

A0+m2
Z)2−4m2

A0m2
Z cos2 2β]1/2}

(57)

m2
h0 =

1

2
{m2

A0+m2
Z−[(m2

A0+m2
Z)2−4m2

A0m2
Z cos2 2β]1/2}
(58)
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There is no constraint on the masses ofmA0,mH±,mH0,
but quite remarkably

mh0 ≤ mZ| cos 2β| ≤ mZ , (59)

the limit being reached as mA0 → ∞.
In the SM there is no such bound on the Higgs

mass - here it has arisen essentially from the fact
that the “φ4” part of the scalar potential has the
given (not a free parameter) form

(g2 + g′2)

4
[|H0

u|2 − |H0
d|2]2 (60)

(see (44)). Of course, this limit mh0 ≤ mZ has
already been passed experimentally. The the-
ory is still alive because one-loop corrections to
these tree-level masses can be quite large. Such
contributions grow as ln(mS/mt) where mS is
an average top squark mass. By pushing mS up
to say a few TeV one can increase the bound on
mh0 to about 130 GeV. But fine-tuning will be-
gin to be a worry once more if the mass scale of
sparticles is much higher than this.
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